Clement Lee (Newcastle University, UK)
2025-06-26
Interest in degree distribution
Power law \(\rightarrow\) Scale-freeness
Associated with preferential attachment
General case \(\nrightarrow\) power law
Other models \(\rightarrow\) scale-freeness
Debate on ubiquity
Main cause: only snapshots available
If we have the evolution data:
Can we evidence the preferential attachment?
How do we model the data in a probabilistic / statistical way?
What is the precise form of the weight function?
## from to add
## 1 glmmsr methods FALSE
## 2 GpGp FNN TRUE
## 3 pmxTools stats FALSE
## 4 ceterisParibus knitr TRUE
## 5 pmxTools xpose FALSE
## 6 mRchmadness shiny FALSE
## 7 glmmsr lme4 FALSE
## 8 mRchmadness rvest FALSE
## 9 xpose dplyr FALSE
## 10 xpose utils FALSE
\[\vdots\]
From 2019-01-29 to 2024-12-31
Obtained by crandep::get_dep_all_packages()
… which uses tools::CRAN_package_db()
Change in Imports
for one day
Some new packages, some existing ones
## previous date indegree increment count
## 1 2019-01-29 0 0 9315
## 2 2019-01-29 0 1 1
## 3 2019-01-29 1 0 1306
## 4 2019-01-29 2 0 459
## 5 2019-01-29 3 0 226
## 6 2019-01-29 4 0 161
## 7 2019-01-29 5 0 103
## 8 2019-01-29 6 0 75
## 9 2019-01-29 7 0 49
## 10 2019-01-29 8 0 40
\[\vdots\qquad\qquad\qquad\qquad\]
The statistical model based on preferential attachment
\(Y_i\): number of new edges / increments for node \(i\)
\(\{Y_i\}~~~~\sim\) Multinomial with prob. \(\left\{\frac{d_i^{\alpha}}{\sum_j d_j^{\alpha}}\right\}\), 1 new edge
\(\{Y_i\}|M\sim\) Multinomial with prob. \(\left\{\frac{d_i^{\alpha}}{\sum_j d_j^{\alpha}}\right\}\), \(M\sim\) Poisson\((\mu)\) new edges
\(g(d)=d^{\alpha}\)
Real data displays subtle tail behaviour
\(g(d)=\left\{\begin{array}{ll} d^{\alpha}, & d\leq \gamma, \\ \gamma^{\alpha}+\beta(d-\gamma), & d\geq \gamma \end{array}\right.\)
Regress increment on in-degree
Choice of \(g(d)\)
Bayesian inference for \((\alpha,\beta,\gamma,\delta,\mu)\)
Imports
, new packagesPreferential attachment evidenced from increments of network evolution
Piecewise weight function of in-degree
Model applied to CRAN package dependencies
This presentation’s slides: https://bit.ly/sunbelt2025
On partial scale-freeness: https://doi.org/10.1111/stan.12355
On degree tail flexibility: https://doi.org/10.48550/arXiv.2506.18726
Barabási, Albert-László, and Réka Albert. 1999. “Emergence of Scaling in Random Networks.” Science 286 (5439): 509–12. https://doi.org/10.1126/science.286.5439.509.
Boughen, Thomas, Clement Lee, and Vianey Palacios Ramirez. 2025. “Tail Flexibility in the Degrees of Preferential Attachment Networks.” ArXiv E-Prints. https://doi.org/10.48550/arXiv.2506.18726.
Broido, A. D., and A. Clauset. 2019. “Scale-Free Networks Are Rare.” Nature Communications 10 (1017). https://doi.org/10.1038/s41467-019-08746-5.
Hofstad, Remco van der. 2016. “Generalized Random Graphs.” In Random Graphs and Complex Networks, 183–215. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press. https://doi.org/10.1017/9781316779422.009.
Krapivsky, P. L., and S. Redner. 2001. “Organization of Growing Random Networks.” Physical Review E 63 (6): 066123.
Lee, Clement, Emma F Eastoe, and Aiden Farrell. 2024. “Degree Distributions in Networks: Beyond the Power Law.” Statistica Neerlandica, 1–17. https://doi.org/10.1111/stan.12355.
Oliveira, R, and J Spencer. 2005. “Connectivity Transitions in Networks with Super-Linear Preferential Attachment.” Internet Mathematics 2 (2): 121–63. https://doi.org/10.1080/15427951.2005.10129101.
Rudas, A, B Tóth, and B Valkó. 2007. “Random Trees and General Branching Processes.” Random Structures and Algorithms 31 (2): 186–202. https://doi.org/10.1002/rsa.20137.
Voitalov, Ivan, Pim van der Hoorn, Remco van der Hofstad, and Dmitri Krioukov. 2019. “Scale-Free Networks Well Done.” Phys. Rev. Res. 1 (3): 033034. https://doi.org/10.1103/PhysRevResearch.1.033034.