

From epidemic models to the R number

Clement Lee

2020-06-24 (Wed)

Outline

- Exponential growth
- A simple epidemic model
- The R number (that everybody talks about)
- Connect to real-life work

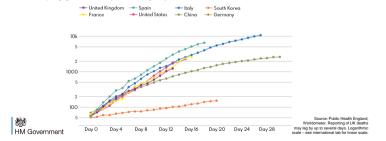
You might have seen this

STAY HOME > PROTECT THE NHS > SAVE LIVES

Global comparison of deaths

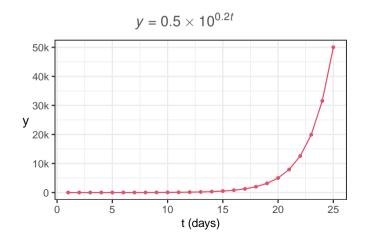
Global deaths comparison.

Countries are aligned by stage of the outbreak. Day 0 equals the first day 50 deaths were reported. (Confidence: deaths are reasonably accurate, but international reporting lags are unclear, so may not be comparing exactly like for like).

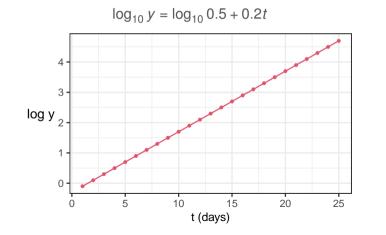


Source: Government's slides to accompany coronavirus press conference

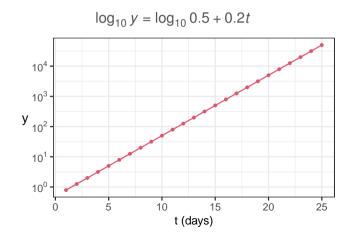
Exponential growth ...



... on a straight line



10-fold every 5 days



An epidemic model

- Realistically, the number of cases/deaths can't go to infinity
- Susceptible-Infectious (SI) model
 - S: Number of people who have not been infected (susceptible)
 - I: Number of people who are infected and infectious
 - N: Total population, constant over time

$$S + I = N$$

Dynamics of the SI model

- Susceptible or infectious at any time, but not both
- Transition from *S* to *I*
 - No contact, no infection
 - · Contact with an infectious person might or might not become infectious
- How do we describe the dynamics? Differential equations!

$$\frac{dS}{dt} = -\beta \frac{S \times I}{N}$$
$$\frac{dI}{dt} = \beta \frac{S \times I}{N}$$

Understanding the equations

- $\beta > 0$ is an unknown **parameter**
- $\frac{dS}{dt} + \frac{dI}{dt} = 0$
- Also, remember S + I = N, so

$$\frac{dI}{dt} = \beta \frac{S \times I}{N}$$
$$= \beta \frac{(N - I) \times I}{N}$$

A-Level MATHEMATICS Paper 1

Question 1

- a. Decompose the function $\frac{N}{(N-I) \times I}$ into partial fractions. [2 marks]
- b. Given that I = 1 at t = 0, solve the following differential equation. [5 marks]

$$\frac{dI}{dt} = \beta \frac{(N-I) \times I}{N}$$

Question 1a

Let

$$\frac{N}{(N-I)\times I} = \frac{A}{N-I} + \frac{B}{I}$$

Rearranging terms, we have

$$\frac{N}{(N-I)\times I} = \frac{(A-B)\times I + BN}{(N-I)\times I}$$

Equating the coefficients, we have A - B = 0 and B = 1, which means A = 1.

$$\therefore \frac{N}{(N-I) \times I} = \frac{1}{N-I} + \frac{1}{I}$$

As this is a "variables separable" question, we have

$$\frac{N}{(N-I)\times I}\frac{dI}{dt}=\beta$$

Integrating both sides with respect to t

$$\int \frac{N}{(N-I) \times I} dI = \int \beta dt$$

Using result in Question 1a,

$$\int \left(\frac{1}{N-I} + \frac{1}{I}\right) dI = \beta t + c,$$

where *c* is a constant.

Question 1b

Question 1b (cont'd)

$$-\log_{e}(N-I) + \log_{e}I = \beta t + c$$

As $\log_{e}\frac{A}{B} = \log_{e}A - \log_{e}B = -\log_{e}B + \log_{e}A$,
$$\log_{e}\frac{I}{N-I} = \beta t + c$$

Substitute the initial condition I = 1 when t = 0,

$$\log_e \frac{1}{N-1} = c$$

Question 1b (cont'd)

$$\log_e \frac{l}{N-l} = \beta t + \log_e \frac{1}{N-1}$$

Exponentiating and reciprocating both sides,

$$\frac{N-I}{I} = (N-1)e^{-\beta t}$$

Adding one to both sides and rearranging,

$$I = \frac{N}{1 + (N-1)e^{-\beta t}}$$

Intepretation

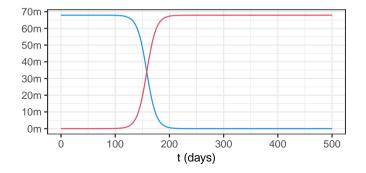
$$I=\frac{N}{1+(N-1)e^{-\beta t}}$$

As *t* becomes larger:

- $e^{-\beta t}$ becomes smaller
- The denominator becomes smaller
- / becomes larger

N = 67.9 million, $\beta = 0.114$

- Susceptible - Infectious



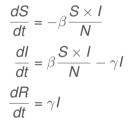
A better model

SIR model

- *R*: People who are **removed** (recovered or death)
 - Different to the **R number** the government has been talking about
 - We will come to this R number later
- S, I, N: as before

$$S+I+R=N$$

Differential equations again



Observe that

$$\frac{dS}{dt} + \frac{dI}{dt} + \frac{dR}{dt} = \frac{dN}{dt} = 0$$

Another mock question?

- Too difficult to solve it in 5 minutes
 - You'll learn how to solve these equations
- In some more sophisticated models
 - Impossible to solve the equations using pen and paper
 - You'll learn numerical methods if a "nice" solution is not available
- Want to know more? See the SI, SIR & other models on Wikipedia

The R_0 number

- Two parameters, β and γ in the SIR model
 - β : The rate of infection
 - γ : The rate of removal (recovery or death)
- The R₀ number is equal to β/γ
- If $\beta < \gamma$, $R_0 < 1$
 - Removals faster than new infections
 - Epidemic under control
- If $\beta > \gamma$, $R_0 > 1$
 - · New infections faster than removals
 - Epidemic bound to happen

Another way of looking at R₀

$$\frac{dI}{dt} = \beta \frac{S \times I}{N} - \gamma I$$
$$= \frac{\beta}{\gamma} \times \frac{S \times \gamma I}{N} - \gamma I$$
$$= \left(\mathsf{R}_0 \frac{S}{N} - 1\right) \times \gamma I$$

At t = 0, S is close to N, so

$$\frac{dI}{dt}\approx (\mathsf{R}_0-1)\times\gamma I$$

If $R_0 > 1$, $\frac{dI}{dt} > 0 \Rightarrow$ increasing number of infectious

R₀ changes over time and space

- It seems like the R₀ number is constant
- But β (infection rate) and R₀ depend on some factors:
 - The biological nature of the virus
 - · How many contacts do we make
- Social distancing and other measures:
 - lower the 2nd factor
 - push β & R₀ down

More deadly = bigger pandemic?

- Ebola has a higher death rate
 - γ is higher
- $R_0 = \beta / \gamma$
 - If β stays the same
 - A higher γ pushes R₀ down
- Deadlier diseases/viruses not necessarily more widespread
- One single number doesn't tell the whole story
- Source: R₀ number on Wikipedia

Disease 🗢	Transmission 🗢	$R_0 \Rightarrow$
Measles	Aerosol	12-18[2]
Chickenpox (varicella)	Aerosol	10-12[3]
Mumps	Respiratory droplets	10-12[4]
Polio	Fecal-oral route	5-7[citation needed]
Rubella	Respiratory droplets	5-7[citation needed]
COVID-19	Respiratory droplets Physical contact Body fluids	5.7 ^[5]
Pertussis	Respiratory droplets	5.5 ^[6]
Smallpox	Respiratory droplets	3.5-6[7]
HIV/AIDS	Body fluids	2-5[citation needed
SARS	Respiratory droplets	0.19-1.08 ^[8]
Common cold	Respiratory droplets	2-3[9]
Diphtheria	Saliva	1.7-4.3[10]
Influenza (1918 pandemic strain)	Respiratory droplets	1.4-2.8 ^[11]
Ebola (2014 Ebola outbreak)	Body fluids	1.5-1.9 ^[12]
Influenza (2009 pandemic strain)	Respiratory droplets	1.4-1.6 ^[13]
Influenza (seasonal strains)	Respiratory droplets	0.9-2.1 ^[14]
MERS	Respiratory droplets	0.3-0.8[15]

What are the scientists (= we) doing?

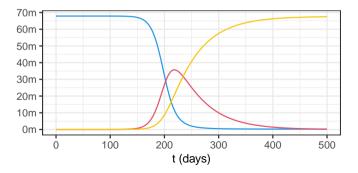
- Calculate the parameters and R₀ number
- · Collect the data of the numbers of infectious, deaths and recovery

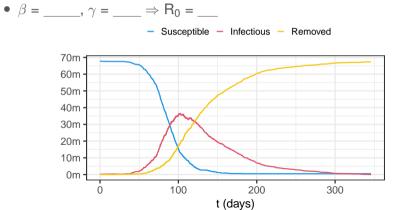
Lancaster

- Apply more realistic models
 - The SI and SIR models are too simplistic
 - If the model is no good, the results are no good

If we know the numbers

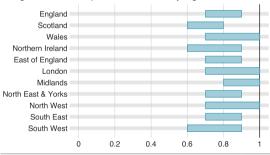
• $\beta = 0.114$, $\gamma = 0.02 \Rightarrow R_0 = 5.7$





Uncertainty

Estimates of regional R numbers



Range of Covid-19 reproduction number by region

Source: DHSC, Scottish Government, NI Dept. of Health, Wales TAC

BBC

Source: BBC's coronavirus UK map

Thanks for listening!

Useful resources:

- Government's press conference slides
- Government's data archive