How do weak chess engines perform and potentially cheat? Sports modelling reading group

Clement Lee

2022-11-29

Some weak chess engines

Figure 1: Source: Wikipedia

Elo World, a framework for benchmarking weak chess engines

DR. TOM MURPHY VII PH.D.

 $\label{eq:ccs} \mbox{CCS Concepts:} \bullet \mbox{Evaluation methodologies} \to \mbox{Tournaments}; \bullet \mbox{Chess} \to \mbox{Being bad at it};$

Additional Key Words and Phrases: pawn, horse, bishop, castle, queen, king

ACH Reference Format:

Dr. Tom Murphy VII Ph.D. 2019. Elo World, a framework for benchmarking weak chess engines. 1, 1 (March 2019), 13 pages. https://doi.org/10.1145/nnnnnn.nnnnnn with a rating of 2000). If the true outcome (of e.g. a tournament) doesn't match the expected outcome, then both player's scores are adjusted towards values that would have produced the expected result. Over time, scores thus become a more accurate reflection of players' skill, while also allowing for players to change skill level. This system is carefully described elsewhere, so we can just leave it at that.

The players need not be human, and in fact this can facilitate running many games and thereby getting arbitrarily accurate ratings.

The problem this paper addresses is that basically all chess tournaments (whether with humans or computers or both) are between players who know how to play chess, are interested in winning their games, and have some reasonable level of skill. This makes

Tom Murphy VII, *Elo world, a framework for benchmarking weak chess engines*, A Record of the Proceedings of SIGBOVIK, 2019.

Motivation

Modelling performance of chess grandmasters

Detecting cheating, online or over the board

Magnus Carlsen and Hans Niemann: The cheating row that's blowing up the chess world

③ 23 September

Figure 2: https://www.bbc.co.uk/news/world-63010107

Outline

- 1. Some basics
- 2. Modelling performance by outcome
 - + collusion detection
- 3. Modelling performance by moves
 - + cheating detection

Some basics

A standard board

Figure 3: Source: https://www.chess.com/

How the pieces move

	х		
	х		
	贠		

Х						Х	
	х				х		
		Х		Х			
			Q				
		Х		х			
	х				х		
Х						х	
							Х

х

х

х

х

pawn

[can move 2 squares on 1st move only!]

Х

x x x 🕾 x x x x

bishop

x | x | x

XXX

X X X

х

х

knight

	Х	Х	Х		
	Х	\$	Х		
	Х	Х	Х		

rook

queen

king

Figure 4: Source: https://www.dummies.com/

Draws can happen

Figure 5: Source: https://support.chess.com/

Most common result in high level games

Figure 6: https://xkcd.com/1800/

Draw percentage might have gone up

Figure 7:

https://www.chess.com/article/view/the-draw-rule-is-classical-chess-dead

Another says probably not

 $\label{eq:Figure 8: https://en.chessbase.com/post/has-the-number-of-draws-inchess-increased$

Some observations

Quick comparison:

- ► The one says yes: Elo 2750+
- ► The one says no: Elo 2600+
- (One requirement for becoming a GM: Elo 2500+)
- Some recent tournaments reward taking risks
 - 3 points for win, 1 point for draw
 - More points for winning outright instead of winning in tiebreaks
- Super GMs prepare more thoroughly
 - More averse to taking risks, which increase the chance of a decisive result either way
 - With the help of computer engines

Computer engines

Before computer engines

* * **		Move Kc6 Qa6+ Qc6+ Qg6 Qa5+ Qc5 Ke5 Kd4	Value Win in 5 Win in 5 Win in 8 Win in 8 Win in 8 Win in 9 Win in 10 Win in 10
	<u>\$</u>	Qc5 Ke5 Kd4 Qg1 Ke6 Qf2 Ke4 Qd4 Kc5 Qxb5 Qc6 Qf6	Win in 9 Win in 10 Win in 10 Win in 11 Win in 13 Win in 14 Win in 16 Draw Draw Lose in 28 Lose in 15
		 Whi Black 	te to move Sk to move

Figure 9: https://en.wikipedia.org/wiki/Endgame_tablebase

There is no 32-piece tablebase (yet)

Figure 10: https://xkcd.com/1002/ (cropped)

Human chess is not dead because

- Chess is not completely solved
- Weak chess engines make mistakes (esp. under time pressure)

Figure 11: Move 130, Game 6, FIDE World Chess Championship 2021

So how do computer engines work?

- Evaluate the position
- Assign a value \approx the number of (unpassed) pawns

Figure 12: A positive value here means white is better

Advantage over the moves

Figure 13: Source: https://fivethirtyeight.com

Modelling the performance by outcome and collusion detection

Another xkcd picture

Figure 14: https://xkcd.com/1392/

Inflation or getting stronger?

Figure 15: https://xkcd.com/1392/

Divinsky and Keene (1989)

- Book: Warriors of the Mind
- Data: games between only 64 of the greatest players
- Bradley-Terry model
 - a draw counts half of a win

Henery (1992)

Criticises Divinsky and Keene (1989)

- of the use of selective data
- of the treatment of draws
- Noted systematic increase in the proportion of draws
- Thurstone-Mosteller model
 - Allows differing draw proportions of the players
- Suggests other potentially important factors
 - The length of game (number of moves)
 - Age of the players

Caron and Doucet (2012)

Bradley-Terry Model

Also allows ties

Focus on the efficient Gibbs sampler upon data augmentation

- No ranking results presented
 - Only plots of ACF and test set RMSE

Trying to unify the models

The variables

Y_i: performance of *i*-th player

$$\blacktriangleright X = Y_i - Y_j$$

The parameters

- For Y_i : $\lambda_i > 0$, or equivalently $\mu_i = \log \lambda_i$
- Draw thresholds: $\delta_{ij} \ge 0, \ \delta_{ji} = -\delta_{ij}$
- σ additionally for Thurstone-Mosteller

Scenarios

i beats *j*
$$\Leftrightarrow$$
 X > δ_{ij}
i draws *j* \Leftrightarrow $\delta_{ji} < X < \delta_{ij}$

• When
$$\delta_{ij} = \delta_{ji} = 0$$
, no draws

If Y_i is normally distributed with mean μ_i

$$\begin{aligned} X &\sim \mathsf{N}(\mu_i - \mu_j, \sigma) \\ \mathsf{Pr}(i \text{ beats } j) &= \mathsf{Pr}(X > \delta_{ij}) \\ &= \mathsf{Pr}\left(\frac{X - (\mu_i - \mu_j)}{\sigma} > \frac{\delta_{ij} - (\mu_i - \mu_j)}{\sigma}\right) \\ &= \mathsf{Pr}\left(\frac{X - (\mu_i - \mu_j)}{\sigma} \le \frac{(\mu_i - \mu_j) - \delta_{ij}}{\sigma}\right) \\ &= \Phi\left(\sigma^{-1}(\mu_i - \mu_j - \delta_{ij})\right) \end{aligned}$$

▶ This is what Henery (1992) used

Another distribution function

$$\mathsf{Pr}(i ext{ beats } j) = rac{e^{\mu_i - \mu_j - \delta_{ij}}}{e^{\mu_i - \mu_j - \delta_{ij}} + 1} \ = rac{e^{\mu_i}}{e^{\mu_i} + e^{\mu_j}e^{\delta_{ij}}} \ = rac{\lambda_i}{\lambda_i + \lambda_j heta_{ij}}$$

 $\blacktriangleright \ \theta_{ij} = e^{\delta_{ij}} \ge 1 \text{ as } \delta_{ij} \ge 0$

▶ This is what Caron and Doucet (2012) used

Some modelling considerations

Incorporating the rise of engines?

- A single changepoint
- Age of the players
- Date the game was played

Draw probability depends on the players?

- In Henery (1992), $\delta_{ij} = \delta_i + \delta_j$
- In Caron and Doucet (2012), $\delta_{ij} = \delta$

Hankin (2020)

Bradley-Terry Model

Incorporates 1) a "draw monster" & 2) white's advantage

$$Pr(i \text{ beats } j \text{ with white pieces}) = \frac{\lambda_i + \omega}{\lambda_i + \lambda_j + \omega + \theta}$$

$$Pr(i \text{ beats } j \text{ with black pieces}) = \frac{\lambda_i}{\lambda_i + \lambda_j + \omega + \theta}$$

$$Pr(i \text{ draws } j) = \frac{\theta}{\lambda_i + \lambda_j + \omega + \theta}$$

$$\sum_i \lambda_i + \omega + \theta = 1$$

- CRAN package hyper2
- Data: World Chess Championship 1963

Incorporating collusion allegation

- Fischer claimed that Keres, Petrosian and Geller colluded
- A different draw monster θ^* for the concerned players
 - ▶ No mention of how the "sum to 1" constraint is dealt with
- Testing equality with that of the remaining players
- Also applied to another data (interzonal Stockholm 1962)
 - Soviet players drew more than the rest

Modelling strength by moves and cheating detection

A bit of history

Figure 16: Hans Niemann admitted to cheating on chess.com in 2020

The alleged coach/mentor

Figure 17: Maxim Dlugy, suspected of & admitted to online cheating twice

World Champion

Figure 18: Carlsen dominated classical chess for over 10 years

Sinquefield Cup 2022

- Saint Louis Chess Club, Missouri
- 10 players, single round robin, over the board

Figure 19: Carlsen & Niemann played in the 3rd round

Aftermath

- ▶ 2022-09-04: Carlsen lost with white pieces to Niemann
 - Carlsen's 53-game unbeaten streak in classical over the board tournaments ended
 - Niemann's live Elo rating surpassed 2700 for the first time
- 2022-09-05: Carlsen withdrew from the tournament, while organisers put in more anti-cheating measures
- 2022-09-21: Carlsen said he's "impressed by Niemann's play" and that Dlugy "must be doing a great job"
- 2022-09-26: Carlsen issued a statement accusing Niemann of cheating
- > 2022-10-04: Chess.com issued a report and banned Niemann
- 2022-10-20: Niemann filed a \$100 million defamation lawsuit against Carlsen, Chess.com and some others

Circumstantial evidence for a statistical anomaly

- Niemann, in a post-match interview, claimed that he prepared the line (sequence of moves) after watching a Carlsen game
 - But he remembered the place and year incorrectly
 - Some found him nervous in the interview and fumbled explaining the lines
- Some questioned how Niemann miraculously prepared this particular line
- No evidence was found that
 - the line was leaked to Niemann
 - Niemann cheated during the game
- Niemann denied ever cheating over the board

Statistical framework

- Is there a way of statistically inferring if somebody cheated or not?
- ▶ Frequentist: test H₀: Niemann didn't cheat, using games data
- Bayesian: calculate Pr(Niemann cheated|games data)
- Required:
 - a model that describes how moves are made with or without cheating
 - understanding of the behaviour / pattern of cheating
 - understanding of how human plays in general

The human factor

- Time pressure
- ▶ Not remembering / mixing up a line
- Surprising opponent with a sub-optimal move
- Fallibility

Ken Regan

Figure 20: Credit: Sinna Nasseri for TIME

Di Fatta, Haworth, and Regan (2009)

"Skill rating by Bayesian inference"

- The moves are the data
- Compare against a benchmark i.e. computer engine
- Probabiliity of making a particular move depends on:
 - The top candidate moves suggested by engine
 - The values associated with these moves
 - The strength λ
 - Some other (hyper)parameters

$$\mathsf{Pr}(\mathsf{candidate} \ \mathsf{move} \ i) \propto (v_{\mathsf{max}} - v_i + K)^{-\lambda}$$

Toy example

Figure 21: Source: https://chess24.com

• $v_{max} = 0.79$, K = 0.1• Probability of e4 \propto

 $(0.79 - 0.79 + 0.1)^{-\lambda}$

 \blacktriangleright Probability of f3 \propto

 $(0.79 - 0.59 + 0.1)^{-\lambda}$

 \blacktriangleright Probability of Nf3 \propto

 $(0.79 - 0.49 + 0.1)^{-\lambda}$

► Larger λ ⇒ more able to pick out best move

Bayesian inference

Iteratively apply the Bayesian rule

•
$$\mathcal{F}_n$$
: moves 1 to $n \Rightarrow \mathcal{F}_n = \{F_{n-1}, \text{move } n\}$

$$\pi(\lambda | \mathcal{F}_1) = \pi(\lambda | \mathcal{F}_0, \text{move } 1) \propto \Pr(\text{move } 1 | \lambda) \pi(\lambda)$$

$$\pi(\lambda | \mathcal{F}_2) = \pi(\lambda | \mathcal{F}_1, \text{move } 2) \propto \Pr(\text{move } 2 | \lambda, \mathcal{F}_1) \pi(\lambda | \mathcal{F}_1)$$

They did this so that they can obtain (the distribution of) λ over the moves, instead of just one at the end of the game

Consistent with Elo

Figure 22: Figure 1 of Di Fatta, Haworth, and Regan (2009)

Compare skill rating

Between players of similar Elo rating

ANALYSIS OF THE OPPONENT PLAYERS IN THE DATASET E2400

set	num.	$\mu_{\overline{c}}$	$\sigma_{\overline{c}}$
L ₀	313	1.1493	0.0686
$\mathbf{L^{1}}$	313	1.2302	0.0623
$L^{\frac{1}{2}}$	578	1.2339	0.0460

Figure 23: Table 3 of Di Fatta, Haworth, and Regan (2009)

Consistent with increasing draw percentage?

Figure 24: Previously shown figure on increasing draw percentage

Different ranges of Elo rating though

Two other papers

- ▶ Haworth, Regan, and Di Fatta (2010)
- ▶ Haworth, Biswas, and Regan (2015)
- Not much being offered on cheating detection apart from Move Matching
 - Percentage of matches with computer engine moves
 - This is what some focus on when accusing Niemann of cheating
- I'm still none the wiser

Regan's more recent analysis

Raw outlier index, based on move matching

- 50: perform at Elo rating
- < 50: worse than Elo rating</p>
- > 50: better than Elo rating
- Niemann's performance doesn't show anomaly
- This requires Elo rating being accurate & up-to-date

A smart cheater

- Just cheat at some key moves
- Only cheat at one or two games in a tournament
- Regan's methods at best help to keep chess fair

Coming back to the basics

People mixing up the two

Pr(cheat|win)

 $\Pr(\text{cheat}) \Pr(\text{win}|\text{cheat})$

 $\overline{\mathsf{Pr}(\mathsf{cheat})\,\mathsf{Pr}(\mathsf{win}|\mathsf{cheat}) + (1-\mathsf{Pr}(\mathsf{cheat}))\,\mathsf{Pr}(\mathsf{win}|\mathsf{not\ cheat})}$

- High prior Pr(cheat) by some
- Pr(win|not cheat) by strength
 - Either outcome or skill rating
- Pr(win|cheat) difficult to determine
 - Need to understand how to do it over the board

Last night

Figure 25: https://www.youtube.com/watch?v=P4LnwRHGIHg

(More) final thoughts

Different techniques to cheat online and over the board

- Unfair Pr(cheat) for Niemann?
- Same / similar instantaneous outcome
 - One of the top moves
 - Elevated λ ?
- "A human would not play this kind of moves"
 - Style of player from historical games
 - Moves closer to computer engine or their own style

Bibliography I

Caron, François, and Arnaud Doucet. 2012. "Efficient Bayesian Inference for Generalized Bradley-Terry Models." *Journal of Computational and Graphical Statistics* 21 (1): 174–96. https://doi.org/10.1080/10618600.2012.638220.

Di Fatta, Giuseppe, Guy McC Haworth, and Kenneth W Regan. 2009. "Skill Rating by Bayesian Inference." In *2009 Ieee Symposium on Computational Intelligence and Data Mining*, 89–94. https://doi.org/10.1109/CIDM.2009.4938634.

Divinsky, Nathan, and Raymond Keene. 1989. *Warriors of the Mind: A Quest for the Supreme Genius of the Chess Board.* Brighton: Hardinge Simpole.

Hankin, Robin K S. 2020. "A Generalization of the Bradley-Terry Model for Draws in Chess with an Application to Collusion." *Journal of Economic Behavior and Organization* 180: 325–33. https://doi.org/10.1016/j.jebo.2020.10.015.

Bibliography II

Haworth, Guy, Tamal Biswas, and Ken Regan. 2015. "A Comparative Review of Skill Assessment: Performance, Prediction and Profiling." In *Advances in Computer Games*, edited by Aske Plaat, Jaap van den Herik, and Walter Kosters, 135–46. Cham: Springer International Publishing.

Haworth, Guy, Ken Regan, and Giuseppe Di Fatta. 2010. "Performance and Prediction: Bayesian Modelling of Fallible Choice in Chess." In *Advances in Computer Games*, edited by H. Jaap van den Herik and Pieter Spronck, 99–110. Berlin, Heidelberg: Springer Berlin Heidelberg.

Henery, Robert J. 1992. "An Extension to the Thurstone-Mosteller Model for Chess." *Journal of the Royal Statistical Society: Series D* (*the Statistician*) 41: 559–67.