My experience with the RSS Statisticians for Society scheme

Clement Lee

2023-03-10 (Fri)

Outline

Statisticians for Society

Working with a charity and their data

Spatial analysis

Thoughts

Statisticians for Society (S4S)

Overview of scheme

- RSS matches charity organisations with statisticians
- A pro bono / volunteering scheme
- A committee overseeing the whole process

- Charity contacts S4S committee
- Scoper meets with charity to identify need & form of support
- Charity fills in the scoping form
 - Project title & summary
 - Skills / qualifications required
 - Number of volunteers & hours required
 - Nature of data

Advertising

Committee emails opportunities to those signed up

- Information from the scoping form
- ▶ s4s@rss.org.uk
- Requirement: fellow of RSS

My applications

Unsuccessful the first time

The advert I applied to the second time

Understanding if current boundaries are the most effective

Estimated time: 12 hours

We are in need of a volunteer for an organisation that operates a platform where people can exchange items for free. It runs in a way where the 'seller' can advertise an item, and a 'buyer' can connect, and then after agreeing, can then collect the item for free.

▶ ≥ 1 statistician(s)

After getting selected

▶ 3-way meeting: (on 202**2**-03-10)

- S4S project manager (Amirah)
- someone from Freegle (Edward)
- the statistician (me)
- Talk about project proposal
 - Scope
 - Timeline (3 months)
 - Method
- Put what was discussed in the document
- Sent proposal to scoper to approve

Working with Freegle and their data

Online platform

- https://www.ilovefreegle.org
- Online dating for stuff
- Like eBay or Gumtree
 - no money involved
- Or donating stuff to charity shop
 - more targeted

Steps

- 1. Offerer puts item on Freegle
- 2. Replier responds to the post
- 3. Offerer and replier agree time and place
- 4. Replier goes to offerer's to pick up item
- 5. Offerer marks item gone on Freegle

What the data look like

##		OfferID	OfferLat	OfferLng	OfferUID	ReplyLat	ReplyLng	ReplyUID
##	1	66473245	52.04057	-0.702386	10216160	52.02535	-0.801923	37937662
##	2	62004430	51.52760	-0.721791	2364225	51.53138	-0.720402	571023
##	3	59162925	50.80681	-1.876720	3467712	50.72900	-1.840794	36068373
##	4	54667917	54.07795	-2.840993	2060332	53.95756	-2.830094	3855713
##	5	62463673	51.58688	-1.795023	38607572	51.57926	-1.807035	33866461
##	6	58801500	54.55918	-2.496012	869151	54.79905	-2.642533	868189

##		MessagesExchanged	KnownSuccessful	PositiveRating	NegativeRating
##	1	6	TRUE	FALSE	FALSE
##	2	1	FALSE	FALSE	FALSE
##	3	4	FALSE	FALSE	FALSE
##	4	6	FALSE	FALSE	FALSE
##	5	8	FALSE	FALSE	FALSE
##	6	6	TRUE	FALSE	FALSE

Causal diagram of variables

What makes an exchange more likely to happen, & by how much?

Counts vs distance

Successful Unsuccessful

Success probability vs distance

Counts vs # messages

Success probability vs # messages

- Probability plateaus around 0.57
- \blacktriangleright In real-life data, probability approaches 1 as the covariate (# messages) increases

• Replace
$$\log \frac{p}{1-p}$$
 by $\log \frac{p}{0.57-p}$ as linear combination of variables

Call this the modified log odds

Modified log-odds vs # messages

Modified log-odds vs distance

Modified logistic regression

Vanilla model

$$\log rac{p_i}{1-p_i} = -0.618 + 0.0339 imes ext{Number of messages}_i - 0.148 imes ext{log(Distance}_i)$$

Better:

$$\log \frac{p_i}{0.565 - p_i} = -2.79 + 0.783 \times \text{Number of messages}_i - 0.261 \times \log(\text{Distance}_i)$$

Best:

 $\log \frac{p_i}{0.566 - p_i} = -3.14 + 0.885 \times \text{Number of messages}_i - 0.0653 \times \log(\text{Distance}_i)$ $- 0.0562 \times \text{Number of messages}_i \times \log(\text{Distance}_i)$

The mid-point call

- Me and S4S reviewers (and Amirah)
- I presented, they made comments
 - Interaction term
- An extension to the project deadline
 - Longer timeline
 - More hours

Potential changes

- Nudging those who messaged too few times
- Minimal difference for those messaged more than 10 times
- Current effectiveness of the platform
- Concrete numbers help

Writing up

- ► A final report for RSS & the charity
- Not a journal article
- Shared with others on the board of Freegle

End of project call

▶ More analysis & collaboration to follow, but "wrap-up" required for RSS

- 4-way meeting:
 - Edward
 - Me
 - Scoper
 - S4S project manager
- Scoper makes sure needs are met & everyone is happy
- Edward & I made recommendations

Spatial analysis

Location of users

Interaction network

Questions

- Are the communities learned from the data similar to those created by the board / volunteers?
- How far is a user willing to travel for an item?
 - physical distance
 - adjustment by urban scaling factors, and/or
 - level of social deprivation

Back to original project summary

Understanding if current boundaries are the most effective

Estimated time: 12 hours

We are in need of a volunteer for an organisation that operates a platform where people can exchange items for free. It runs in a way where the 'seller' can advertise an item, and a 'buyer' can connect, and then after agreeing, can then collect the item for free.

- I didn't answer this question
- MSc project!

Some thoughts

Great match

- The charity knows what needs to be answered
- They know their data well
- Knowledge of statisticians complement what they have

Give concrete models and numbers

- high-level advice
- Coding
 - Data cleaning & visualisation
 - Reproducibility one script to rule them all
- Meet in person
 - The human interaction

Case study:

https://rss.org.uk/membership/volunteering-and-promoting/statisticians-forsociety-initiative/case-studies/freegle/

Thank you

