Clement Lee (joint work with Emma Eastoe and Aiden Farrell)
2024-07-10
\[\begin{align*} f(y) &\propto y^{-\alpha},\qquad{}y>y_0 \\ \log f(y) &= -\alpha\log{}y+c \\ & \\ & \\ F(y) &= 1-(y/y_0)^{-(\alpha-1)} \\ \log\left(1-F(y)\right) &= -(\alpha-1)\log{}y + c^{*} \end{align*}\]
\[\begin{align*} p(x) &\propto x^{-\alpha},\qquad{}x=x_0,x_0+1,\ldots \\ \log p(x) &= -\alpha\log{}x+c & \\ & \\ \end{align*}\]
Method | Reason | Issue |
---|---|---|
Subset data above \(u\) & choose optimal \(u\) by Kolmogorov-Smirnov statistic (Clauset, Shalizi, and Newman 2009) | Small degrees deviate from straight line | Requires additional procedure; likelihood under different \(u\) not comparable |
Lognormal (Clauset, Shalizi, and Newman 2009; Buzsáki and Mizuseki 2014) | To improve overall fit | Light-tailed; inherently continuous |
Weibull / stretched exponential (Malevergne, Pisarenko, and Sornette 2005) | To improve overall fit | Inherently continuous |
Zipf-polylog / power law with exponential cut-off (Valero, Pérez-Casany, and Duarte-López 2022; Pastor-Satorras and Vespignani 2001) | To improve overall fit; to accommodate “curvature” | Light-tailed |
Incorporating extreme value methods (Voitalov et al. 2019) | Large degrees deviate from straight line | Assumes heavy-tailed; inherently continuous |
Double power law (Ayed, Lee, and Caron 2019) | To accommodate “curvature” | Assumes heavy-tailed |
Mixture of Zipfs (Jung and Phoa 2021) | Small degrees deviate from straight line | Assumes heavy-tailed |
Slope: \(-\alpha(<-1)\)
Tail heaviness: \(1/(\alpha-1)\)
\(\theta\in(0,1]\)
Zipf\((\alpha)\) when \(\theta=1\)
imports
between packages
Hypothesis testing
Underlying network model
Ayed, Fadhel, Juho Lee, and François Caron. 2019. “Beyond the Chinese Restaurant and Pitman-Yor Processes: Statistical Models with Double Power-Law Behavior.” ArXiv E-Print. http://arxiv.org/abs/1902.04714.
Barabási, Albert-László, and Réka Albert. 1999. “Emergence of Scaling in Random Networks.” Science 286 (5439): 509–12. https://doi.org/10.1126/science.286.5439.509.
Bollobás, B, O Riordan, J Spencer, and G Tusnády. 2001. “The Degree Sequence of a Scale-Free Random Graph Process.” Random Structures Algorithms 18 (3): 279–90. https://doi.org/10.1002/rsa.1009.
Buzsáki, G, and K Mizuseki. 2014. “The Log-Dynamic Brain: How Skewed Distributions Affect Network Operations.” Nature Reviews Neuroscience 15: 264–78. https://doi.org/10.1038/nrn3687.
Clauset, A., C. R. Shalizi, and M. E. J. Newman. 2009. “Power-Law Distributions in Empirical Data.” SIAM Review 51 (4): 661–703. https://doi.org/10.1137/070710111.
Hofstad, Remco van der. 2016a. “Generalized Random Graphs.” In Random Graphs and Complex Networks, 183–215. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press. https://doi.org/10.1017/9781316779422.009.
———. 2016b. “Preferential Attachment Models.” In Random Graphs and Complex Networks, 256–300. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press. https://doi.org/10.1017/9781316779422.011.
Jeong, H, Z Néda, and A L Barabási. 2003. “Measuring Preferential Attachment in Evolving Networks.” Europhysics Letters 61 (4): 567–72. https://doi.org/10.1209/epl/i2003-00166-9.
Jung, Hohyun, and Frederick Kin Hing Phoa. 2021. “A Mixture Model of Truncated Zeta Distributions with Applications to Scientific Collaboration Networks.” Entropy 23 (5). https://doi.org/10.3390/e23050502.
Malevergne, Y, V Pisarenko, and D Sornette. 2005. “Empirical Distributions of Stock Returns: Between the Stretched Exponential and the Power Law?” Quantitative Finance 5 (4): 379–401. https://doi.org/10.1080/14697680500151343.
Oliveira, R, and J Spencer. 2005. “Connectivity Transitions in Networks with Super-Linear Preferential Attachment.” Internet Mathematics 2 (2): 121–63. https://doi.org/10.1080/15427951.2005.10129101.
Pastor-Satorras, Romualdo, and Alessandro Vespignani. 2001. “Epidemic Dynamics and Endemic States in Complex Networks.” Physical Review E 63 (6): 066117. https://doi.org/10.1103/PhysRevE.63.066117.
Rudas, A, B Tóth, and B Valkó. 2007. “Random Trees and General Branching Processes.” Random Structures Algorithms 31 (2): 186–202. https://doi.org/10.1002/rsa.20137.
Valero, Jordi, Marta Pérez-Casany, and Ariel Duarte-López. 2022. “The Zipf-Polylog Distribution: Modeling Human Interactions Through Social Networks.” Physica A 603. https://doi.org/10.1016/j.physa.2022.127680.
Voitalov, Ivan, Pim van der Hoorn, Remco van der Hofstad, and Dmitri Krioukov. 2019. “Scale-Free Networks Well Done.” Phys. Rev. Res. 1 (3): 033034. https://doi.org/10.1103/PhysRevResearch.1.033034.