A computing research lab in
- Human-computer interaction
- Social and ubiquitous computing
Themes:
- Health and social care
- Education
- Politics
2017-03-24
A computing research lab in
Themes:
Online learning platform
Different from Massive Open Online Course (MOOC)
Students learn from interaction with each other and mentors/experts
User review system
What if we let the community decide what app to develop?
Support/sharing stage
Design stage
Launch stage
Not all movements reach the target support and get launched
Some successful apps
The sharing of a movement is like spreading an "epidemic" on the social network
This motivates us to develop a network epidemic model for the sharing data
Compartment models
Classical assumptions governing the dynamics
See e.g. Andersson and Britton (2000) (link)
Modelling heterogeneity
Multiple levels of mixing
Not quite applicable to our data
Network modelling
Previous work
Based on Bernoulli random graph (BRG)
Barabási and Albert (1999): Preferential attachment (PA) model
Power-law degree distribution
Small path lengths
High clustering
Epidemic modelling
Compartment models represented by ordinary differential equations
Incorporate network aspects as covariate
Quite remote from previously introduced statistical models
Population: \(m\) nodes/individuals
The epidemic times \(\boldsymbol{I}=(I_1,I_2,\ldots,I_m)\)
The underlying graph/network \(\boldsymbol{G}=\{G_{ij}\}_{m\times m}\)
The transmission tree \(\boldsymbol{P}=\{P_{ij}\}_{m\times m}\)
Step 1: Obtain new edges for the nodes
Index the nodes by their order of entering the network
One edge to start with: nodes \(1\leftrightarrow2\)
Node \(i~(>2)\) brings in \(x_i\) new edges
Step 1: Obtain new edges for the nodes
Toy example: \(m=8,\mu=3\)
## [1] "G" ## ## [1,] . 1 1 1 1 . 1 1 ## [2,] 1 . 1 1 1 . . 1 ## [3,] 1 1 . 1 1 . 1 . ## [4,] 1 1 1 . 1 1 . 1 ## [5,] 1 1 1 1 . 1 1 1 ## [6,] . . . 1 1 . . . ## [7,] 1 . 1 . 1 . . . ## [8,] 1 1 . 1 1 . . .
Step 1: Obtain new edges for the nodes
Toy example: \(m=8,\mu=3\)
Relationship between \(x_i\) and \(G_{ij}\)
## [1] "G" ## ## [1,] . 1 1 1 1 . 1 1 ## [2,] 1 . 1 1 1 . . 1 ## [3,] 1 1 . 1 1 . 1 . ## [4,] 1 1 1 . 1 1 . 1 ## [5,] 1 1 1 1 . 1 1 1 ## [6,] . . . 1 1 . . . ## [7,] 1 . 1 . 1 . . . ## [8,] 1 1 . 1 1 . . .
Step 1: Obtain new edges for the nodes
Likelihood: \[ L_1(\boldsymbol{G};\mu)=\prod_{i=3}^{m} \left[\frac{e^{-\mu}\mu^{x_i}}{x_i!}\right]^{\boldsymbol{1}\{0~\leq~x_i~<~i-1\}} \left[\sum_{z=i-1}^\infty\frac{e^{-\mu}\mu^{z}}{z!}\right]^{\boldsymbol{1}\{x_i~=~i-1\}}\\ =\frac{e^{-\mu(m-2)}}{\prod_{i=3}^{m}(x_i!)}\prod_{i=3}^{m} \mu^{\left[\sum_{j=1}^{i-1}G_{ij}\boldsymbol{1}\left\{0\leq\sum_{j=1}^{i-1}G_{ij}<i-1\right\}\right]}\\ \times\prod_{i=3}^{m}\left[(i-1)!\sum_{z=i-1}^{\infty}\frac{\mu^z}{z!}\right]^{\boldsymbol{1}\left\{\sum_{j=1}^{i-1}G_{ij}=i-1\right\}} \]
Step 2: Preferentially attach the edges to build the network
When node \(i\) enters
Exact likelihood
Step 2: Preferentially attach the edges to build the network
When node \(i\) enters
Approximate likelihood
Step 2: Preferentially attach the edges to build the network
Contribution by node \(i\)'s new edges: \[ L_{2i}=x_i!\times\prod_{j=1}^{i-1}\left(\frac{\sum_{k=1}^{i-1}G_{kj}} {\sum_{l=1}^{i-1}\sum_{k=1}^{i-1}G_{kl}}\right)^{G_{ij}} \]
Likelihood by the process of adding new edges: \[ L_2(\boldsymbol{G}):=\prod_{i=3}^{m}L_{2i}= \prod_{i=3}^{m}(x_i!)\times \prod_{i=3}^{m}\prod_{j=1}^{i-1}\left(\frac{\sum_{k=1}^{i-1}G_{kj}} {\sum_{l=1}^{i-1}\sum_{k=1}^{i-1}G_{kl}}\right)^{G_{ij}} \]
Step 3: Spread the epidemic on the given network
Index the nodes by their epidemic (temporal) order
Infected node \(i\) makes infectious contacts
Likelihood independent of transmission tree \(\boldsymbol{P}\)
\(\pi(\boldsymbol{I}|\boldsymbol{G},\beta)=\beta^{m-1}\exp\left(-\beta\sum\sum_{(i,j):G_{ij}=1}\left[(I_j-I_i)\vee0\right]\right)\\ \qquad\quad~=\beta^{m-1}\exp\left(-\beta\sum_{i=1}^{m-1}\sum_{j=i+1}^{m}G_{ij}(I_j-I_i)\right)\)
Step 3: Spread the epidemic on the given network
So where is \(\boldsymbol{P}\) gone?
\[ \pi(\boldsymbol{P}|\boldsymbol{G})\propto \prod_{j=2}^m \frac{1}{~\sum_{i=1}^{j-1}G_{ij}~} \times \prod_{i=1}^{m-1}\prod_{j=i+1}^{m}\mathbf{1}\left\{P_{ij}\leq G_{ij}\right\} \]
Posterior of \(\boldsymbol{G}\) involves \(\boldsymbol{P}\)
Step 4: Connect the network and the epidemic
Epidemic order not necessarily the same as network order
Convert from epidemic order to network order
Step 4: Connect the network and the epidemic
Toy example continued: \(m=8,\mu=3\)
## [1] "G" ## ## [1,] . 1 1 1 1 . 1 1 ## [2,] 1 . 1 1 1 . . 1 ## [3,] 1 1 . 1 1 . 1 . ## [4,] 1 1 1 . 1 1 . 1 ## [5,] 1 1 1 1 . 1 1 1 ## [6,] . . . 1 1 . . . ## [7,] 1 . 1 . 1 . . . ## [8,] 1 1 . 1 1 . . .
## [1] "G_sigma = f(G, sigma)" ## ## [1,] . 1 1 1 1 1 1 1 ## [2,] 1 . . 1 . 1 1 1 ## [3,] 1 . . 1 . 1 . 1 ## [4,] 1 1 1 . . 1 . 1 ## [5,] 1 . . . . 1 . . ## [6,] 1 1 1 1 1 . . 1 ## [7,] 1 1 . . . . . 1 ## [8,] 1 1 1 1 . 1 1 .
\(\boldsymbol{G}\) is usually unknown
\(~~~~\pi(\boldsymbol{G},\boldsymbol{\sigma},\beta,\mu|\boldsymbol{P},\boldsymbol{I})\\ \propto\pi(\boldsymbol{P},\boldsymbol{I},\boldsymbol{G},\boldsymbol{\sigma},\beta,\mu)\\ =\pi(\boldsymbol{P},\boldsymbol{I}|\boldsymbol{G},\boldsymbol{\sigma},\beta,\mu)~\pi(\boldsymbol{G},\boldsymbol{\sigma},\beta,\mu)\\ =\pi(\boldsymbol{P}|\boldsymbol{G})~\pi(\boldsymbol{I}|\boldsymbol{G},\beta)~\pi(\boldsymbol{G}|\boldsymbol{\sigma},\beta,\mu)~\pi(\boldsymbol{\sigma},\beta,\mu)\qquad(\boldsymbol{P}~\bot~\boldsymbol{I}~\text{given}~\boldsymbol{G})\\ =\pi(\boldsymbol{P}|\boldsymbol{G})~\pi(\boldsymbol{I}|\boldsymbol{G},\beta)~ L_1(\boldsymbol{G}_{\boldsymbol{\sigma}};\mu)~L_2(\boldsymbol{G}_{\boldsymbol{\sigma}})~\pi(\boldsymbol{\sigma})~\pi(\beta)~\pi(\mu)\)
Markov Chain Monte Carlo (MCMC) algorithm straightforward
Uninformative priors
\(\beta\sim\text{Gamma}(a_\beta, \text{rate}=b_\beta)\)
\(\mu\sim\text{Gamma}(a_\mu, \text{rate}=b_\mu)\)
\(\pi(\boldsymbol{\sigma})=(m!)^{-1}\)
Posteriors
\(\beta|\ldots\sim \text{Gamma}\left(a_\beta+m-1,\text{rate}=b_\beta+\sum_{i=1}^{m-1}\sum_{j=i+1}^{m}G_{ij}(I_j-I_i)\right)\)
\(\pi(\mu|\ldots)\propto L_1(\boldsymbol{G}_{\boldsymbol{\sigma}};\mu)~\pi(\mu)\)
\(\pi(\boldsymbol{\sigma}|\ldots)\propto L_1(\boldsymbol{G}_{\boldsymbol{\sigma}};\mu)~L_2(\boldsymbol{G}_{\boldsymbol{\sigma}})\)
Exploring permutation space
Posteriors
\(\Pr(G_{ij}=1|P_{ij}=1,\ldots)=1\)
\(\boldsymbol{G}_0\) the same as \(\boldsymbol{G}\) except \(G_{ij}\) (and \(G_{ji}\)) is set to \(0\)
\(\boldsymbol{G}_1\) the same as \(\boldsymbol{G}\) except \(G_{ij}\) (and \(G_{ji}\)) is set to \(1\)
\(\Pr(G_{ij}=0|P_{ij}=0,\boldsymbol{G}_{-ij},\ldots)\propto \displaystyle\frac{\quad\pi(\boldsymbol{G}_0|\boldsymbol{\sigma},\beta,\mu)\quad} {\sum_{k=1,k\neq i}^{j-1}G_{kj}}\)
\(\Pr(G_{ij}=1|P_{ij}=0,\boldsymbol{G}_{-ij},\ldots)\propto \displaystyle\frac{\pi(\boldsymbol{G}_1|\boldsymbol{\sigma},\beta,\mu)~e^{-\beta(I_j-I_i)}} {\sum_{k=1,k\neq i}^{j-1}G_{kj}+1}\)
Scenarios
Simulate network only, estimate \((\mu,\boldsymbol{\sigma})\)
Simulate network & epidemic, estimate \((\mu,\beta,\boldsymbol{\sigma})\) given \(\boldsymbol{G}\) & \(\boldsymbol{I}\)
Simulate network & epidemic, estimate \((\mu,\beta,\boldsymbol{\sigma},\boldsymbol{G})\) given \(\boldsymbol{P}\) & \(\boldsymbol{I}\)
Identifiability
Posterior of \(\mu\) does not depend not on its true value
Identifiability
\(\beta\) not good either
Identifiability
What about \(\ldots \alpha=\beta\times\mu\)?
Observations
Inverse relationship between epidemic rate \(\beta\) and parameter characterising network connectedness
Identifiability
Review on network epidemics
Model and inference
Simulation study
Still waiting for results
Typical times taken per iteration:
Computational time \(O(m^4)\)
Data sets worth applying the model to
Apply to App Movement data
Compare with models which use BRG
Marginal MCMC methods by simulating the network
Andersson, Hakan, and Tom Britton. 2000. Stochastic Epidemic Models and Their Statistical Analysis. Lecture Notes in Statistics 151. Springer, New York.
Ball, Frank, D. Mollison, and G. Scalia-Tomba. 1997. “Epidemics with Two Levels of Mixing.” Annals of Applied Probability 7: 46–89.
Barabási, Albert-László, and Réka Albert. 1999. “Emergence of Scaling in Random Networks.” Science 286 (5439): 509–12.
Bezáková, Ivona, Adam Kalai, and Rahul Santhanam. 2006. “Graph Model Selction Using Maximum Likelihood.” In Proceedings of the \(23^{rd}\) International Conference on Machine Learning, Pittsburgh, PA, 2006. International Machine Learning Society.
Britton, Tom, and Philip D. O’Neill. 2002. “Bayesian Inference for Stochastic Epidemics in Populations with Random Social Structure.” Scandinavian Journal of Statistics 29 (3): 375–90.
Britton, Tom, Theodore Kypraios, and Philip D. O’Neill. 2011. “Inference for Epidemics with Three Levels of Mixing:methodology and Application to a Measles Outbreak.” Scandinavian Journal of Statistics 38: 578–99. doi:10.1111/j.1467-9469.2010.00726.x.
Neal, Peter, and Gareth Roberts. 2005. “A Case Study in Non-Centering for Data Augmentation: Stochastic Epidemics.” Statistics and Computing 15: 315–27.
Pastor-Satorras, Romualdo, Claudio Castellano, Piet Van Mieghem, and Alessandro Vespignani. 2015. “Epidemic Processes in Complex Networks.” Reviews of Modern Physics 87 (3): 925–79. doi:10.1103/RevModPhys.87.925.