Arbitrary order
Our data is a directed acyclic graph (DAG)
Spinglass algorithm
Walktrap algorithm
Citing\Cited | Group 1 | Group 2 | Group 3 |
---|---|---|---|
Group 1 | 0.70 | 0.10 | 0.15 |
Group 2 | 0.20 | 0.60 | 0.05 |
Group 3 | 0.02 | 0.07 | 0.50 |
Citing\Cited | Group 1 | Group 2 | Group 3 |
---|---|---|---|
Group 1 | 0.70 | 0.10 | 0.15 |
Group 2 | 0.20 | 0.60 | 0.05 |
Group 3 | 0.02 | 0.07 | 0.50 |
Holland, Laskey, and Leinhardt (1983), Social Networks
Airoldi et al. (2008), JMLR
For 3, 4, 5 & 6 groups
Airoldi, Edoardo M., David M. Blei, Stephen E. Fienberg, and Eric P. Xing. 2008. “Mixed Membership Stochastic Blockmodels.” Journal of Machine Learning Research 9: 1981–2014.
Holland, Paul W., Kathryn Blackmond Laskey, and Samuel Leinhardt. 1983. “Stochastic Blockmodels: First Steps.” Social Networks 5 (2): 109–37.
Li, Wenzhe, Sungjin Ahn, and Max Welling. 2016. “Scalable MCMC for Mixed Membership Stochastic Blockmodels.” In Proceedings of the 19th International Conference on Artificial Intelligence and Statistics, 51:723–31. Proceedings of Machine Learning Research.
Peixoto, Tiago P. 2018. “Nonparametric Weighted Stochastic Block Models.” Physical Review E 97: 012306.
Social Network Analysis
Three main groups of articles