
From the power law to extreme value mixture distributions
Extremes Reading Group @ Lancaster

Clement Lee
(joint work with Emma Eastoe and Aiden Farrell)

2024-02-27 (Tue)



Introduction



Discrete power law = Zipf distribution

p(x) = x−α

ζ(α, u + 1) , x = u + 1, u + 2, . . .

I u is a non-negative integer
I α > 1 is the exponent

I ζ(α, z) =
∞∑

i=0
(z + i)−α is the Hurwitz zeta function

log p(x) = −α log x + constant



The log-log plot
I Frequency of occurrence of (sampled) unique words in the novel Moby Dick
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Another example
I The social network of Flickr users
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Particular interest in networks

I Total degrees (undirected) or in-degrees (directed)

I Preferential attachment model
I Barabási and Albert (1999, Science)
I Generating networks using simple rules
I The-rich-get-richer

I Resulting degree distribution follows the power law
I Barabási, Albert and Jeong (1999, Physica A)
I Bollobás et al. (2001, Random Structures & Algorithms)



Related works

I Wang and Resnick (2023, Extremes)
I Reciprocity associated with extremal dependence between in-degrees & out-degrees
I Original model underestimates reciprocity in real-life networks, hence unrealistic

I Here we focus on the degree distribution
I Does the data really follow the power law?



“Close to” power law?
I Analysed by Valero et al. (2022, Physica A)
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What about this
I Partial power law?
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Empirical frequencies mask the tail fit

I The social network of Flickr users (again)
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Goals

I A distribution that fits the tail more adequately

I While retaining the (partial) power law

I And covering the possibility of curvature

I Simultaneously determine between the two



Outline

I The Zipf-polylog distribution & its DoA

I Our mixture model

I Selection between power law or not

I Applications to real data



The Zipf-polylog distribution & its DoA



The Zipf / zeta distribution / discrete power law

p(x ;α) = x−α

∞∑
k=w+1

k−α

, x = w + 1,w + 2, . . .

I Aka the zeta distribution

I The continuous counterpart - the Pareto distribution

I No direct relationship between the two



Relationships



The Zipf-polylog (ZP) distribution (Valero et al., 2022, Physica A)

pZP(x ;α, θ) = x−αθx

∞∑
k=w+1

k−αθk
, x = w + 1,w + 2, . . . ,

I (α, θ) ∈ ((−∞,∞)× (0, 1)) ∪ ((1,∞)× {1})

I Looks like a discrete version of Gamma, but not quite

I A disjoint union of Zipf (θ = 1) and polylog (θ ∈ (0, 1)) distributions

I Accommodating curved data when θ ∈ (0, 1)



ZP inadequate for tails

I Going from θ = 1 to θ ∈ (0, 1] is still insufficient for the right tail

I Consider the maximum domain of attraction (DoA) of ZP distribution



Domain of attraction

I A distribution F is in the DoA of an extreme value distribution H if there exists
an > 0, bn ∈ R such that

lim
n→∞

|F n(anx + bn)− H(x)| = 0,

where H must be a negative Weibull, Gumbel, or Fréchet distribution.

I Applies to continuous & discrete distributions

I Poisson and geometric distributions do not belong to a DoA according to the
definition



Recovery to DoA for discrete distributions

I Shimura (2012, Extremes)

I If discrete F is the discretisation of continuous F0, and F0 is in a DoA, then F is
recoverable to the same DoA

I Geometric and Poisson are recoverable to the Gumbel DoA



Key results for recovery (Shimura, 2012)

Ω(F , x) :=
(

log F̄ (x + 1)
F̄ (x + 2)

)−1

−
(

log F̄ (x)
F̄ (x + 1)

)−1

,

I If lim
x→∞

Ω(F , x) = 0, then F is recoverable to the Gumbel DoA

I If lim
x→∞

Ω(F , x) = ξ > 0, then F is in the Fréchet DoA with tail index ξ



DoA of geometric(θ) distribution

I θ ∈ (0, 1)

F̄ (x) = θx

F̄ (x + 1)
F̄ (x + 2)

= F̄ (x)
F̄ (x + 1)

= 1
θ

lim
x→∞

Ω(F , x) = lim
x→∞

[(
log 1

θ

)−1
−
(

log 1
θ

)−1
]

= 0

I Recoverable to the Gumbel DoA



DoA of ZP(α, θ) distribution

I When θ ∈ (0, 1) i.e. the polylog distribution

lim
x→∞

Ω(F , x) = 0

I Same limit i.e. also recoverable to the Gumbel DoA

I Proof similar to geometric case



DoA of ZP(α, θ) distribution

I When θ = 1 i.e. the Zipf distribution

lim
x→∞

Ω(F , x) = 1/(α− 1)

I In Fréchet DoA with tail index 1/(α− 1)

I Proof in the appendices of the paper



Some remarks

I Voitalov et al. (2019, Physical Review Research) gave the result for the continuous
version i.e. the Pareto distribution

I Regular variation arguments rather than GP distribution used

I Can’t use result for our proof as Zipf 6= discretisation of Pareto



Practically

I Approximate right tail of ZP(α, θ) by (discrete version of) GP distribution with
shape parameter ξ

ξ = I{θ=1}/(α− 1)

I Can’t quite capture heavy tails of a different heaviness other than 1/(α− 1)

c.f.

I For bivariate Gaussian(ρ),

χ := Pr(X > u|Y > u) = I{|ρ|=1}

I Can’t quite capture the spectrum of asymptotic independence



Discrete version of GP distribution

I Integer generalised Pareto (IGP) distribution

I Prieto et al. (2014, Accident Analysis and Prevention)

I Rohrbeck et al. (2018, Annals of Applied Statistics)



Mixture model



General framework

f (z) = π1f1(z) + π2f2(z) + · · ·+ πmfm(z)

I Subject to
m∑

i=1
πi = 1, and 0 < πi < 1

I Usually same support for all components



In extremes

f (z) =

 (1− φu)× h(z)
H(u) , z ≤ u,

φu × gu(z), z > u,

I Disjoint support for the components

I Comprehensive review by Scarrott and MacDonald (2012, REVSTAT)

I R package evmix by Hu and Scarrot (2018, JSS)



From continuous . . .

f (z) =

 (1− φu)× h(z)
H(u) , z ≤ u,

φu × gu(z), z > u,

I h(z): bulk / body distribution

I gu(z): GP density

I φu: exceedances rate



. . . to discrete

p(x) =
{

(1− φu)× pTZP(x ;αmix, θmix, u,w), x = w + 1,w + 2, . . . , u,
φu × [Gu(x ;σ, ξ)− Gu(x − 1;σ, ξ)] , x = u + 1, u + 2, . . .

I pTZP(x): density of truncated ZP distribution

I Gu(x): CDF of GP distribution

I u: a parameter, allowing threshold uncertainty

I w : fixed, as low as possible



Schematic

TZP(αmix, θmix, u, w) IGP(u, σ, ξ)

w w+1w+2 uu+1
x

P
ro

ba
bi

liy
 m

as
s 

fu
nc

tio
n

2−component mixture

TZP(α1, θ1, v, w) TZP(αmix, θmix, u, v) IGP(u, σ, ξ)
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Inference & selection between power law or not



Bayesian inference

I To accommodate the threshold uncertainty

I Markov chain Monte Carlo (MCMC)

I Samples of αmix, θmix, u, σ and ξ

I Interest in if θmix = 1 or θmix ∈ (0, 1)



How to test / select?

I θmix is continuous, never exactly 1 in the samples

I At the boundary makes it even more tricky

I Can’t look at the proportion of θmix = 1 in the samples

I Proximity is insufficient as different tail behaviours implied



Bayesian model selection

1. Define M which equals 0 if θmix ∈ (0, 1), and 1 if θmix = 1

2. Assign Pr(M = 0) and Pr(M = 1)

3. Select between M = 0 and M = 1 in the MCMC
I Gibbs variable selection (Carlin and Chib, 1995, JRSSB) or
I Reversible jump MCMC (Green, 1995, Biometrika)

4. Calculate P̂r(M = 0|data) and P̂r(M = 1|data) from MCMC samples

5. Calculate the Bayes factor



Bayes factor

B10 = P̂r(M = 1|data)
P̂r(M = 0|data)

/Pr(M = 1)
Pr(M = 0)

I B10 > 1: evidence of “the body of the data follows the power law”

I B10 < 1: evidence of “the body of the data does not follow the power law”



For ZP(α, θ) distribution as well

I Can apply model selection to determine θ = 1 or not

I Not ZP vs mixture though - can determine visually

I B10 > 1: evidence of “the whole of the data follows the power law”

I B10 < 1: evidence of “the whole of the data does not follow the power law”



Applications



Moby Dick (poweRlaw::moby)
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Bayes factor = 1.35e−06

I u: Moderate uncertainty but identified

I Not power law for body (left tail)



Flickr users (Voitalov et al., 2019)
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Bayes factor = 122000

I 3-component mixture required

I Partial power law otherwise overlooked by ZP fit



Facebook network at UCSC (Valero et al., 2022)
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Bayes factor = 0.636

I Mixture (IGP) better than ZP in the right tail

I Could be power law or not for body



Facebook network at Harvard (Valero et al., 2022)
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Bayes factor = 10500

I Similar adequacy but strong evidence for partial power law

I αmix < 1, would not be possible for Zipf fit over the whole of data



Main takeaway

I For ZP, θ ∈ (0, 1) (polylog) almost always preferred to θ = 1 (Zipf)

I “Concavity” due to lighter right tail than implied had the power law in the body
been extended

I Mixture resolves by replacing ZP by IGP for the tail



Summary

I ZP distribution useful starting point for data that seems to follow the power law

I Generalises Zipf distribution, but inadequate for right tail

I Mixture model uses integer GP distribution instead

I Bayesian model selection decides if body follows the power law or not

I Applications show good fit and varying degrees of threshold uncertainty

Next steps

I More formal model comparison (ZP, 2-component mixture, 3-component mixture)
via e.g. marginal likelihood

I Modified preferential attachment model that leads to such degree distributions



Thank you for listening!
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