From the power law to extreme value mixture distributions Extremes Reading Group @ Lancaster

> Clement Lee (joint work with Emma Eastoe and Aiden Farrell)

Introduction

Discrete power law = Zipf distribution

$$p(x) = rac{x^{-lpha}}{\zeta(lpha, u+1)}, \qquad x = u+1, u+2, \ldots$$

 $\log p(x) = -\alpha \log x + \text{constant}$

The log-log plot

Frequency of occurrence of (sampled) unique words in the novel Moby Dick

Another example

► The social network of Flickr users

http://konect.cc/networks/flickr-links/

Particular interest in networks

Total degrees (undirected) or in-degrees (directed)

- Preferential attachment model
 - Barabási and Albert (1999, Science)
 - Generating networks using simple rules
 - The-rich-get-richer

Resulting degree distribution follows the power law

- Barabási, Albert and Jeong (1999, Physica A)
- Bollobás et al. (2001, Random Structures & Algorithms)

Related works

- Wang and Resnick (2023, Extremes)
 - Reciprocity associated with extremal dependence between in-degrees & out-degrees
 - Original model underestimates reciprocity in real-life networks, hence unrealistic
- Here we focus on the degree distribution
 - Does the data really follow the power law?

"Close to" power law?

Analysed by Valero et al. (2022, Physica A)

Facebook network at UCSC

What about this

Partial power law?

Facebook network at Harvard

Empirical frequencies mask the tail fit

- A distribution that fits the tail more adequately
- ▶ While retaining the (partial) power law
- And covering the possibility of curvature
- Simultaneously determine between the two

Outline

- The Zipf-polylog distribution & its DoA
- Our mixture model
- Selection between power law or not
- Applications to real data

The Zipf-polylog distribution & its DoA

The Zipf / zeta distribution / discrete power law

$$p(x;\alpha) = \frac{x^{-\alpha}}{\sum_{k=w+1}^{\infty} k^{-\alpha}}, \qquad x = w+1, w+2, \dots$$

- Aka the zeta distribution
- ▶ The continuous counterpart the Pareto distribution
- No direct relationship between the two

Relationships

The Zipf-polylog (ZP) distribution (Valero et al., 2022, Physica A)

$$p_{\mathsf{ZP}}(x;\alpha,\theta) = \frac{x^{-\alpha}\theta^x}{\sum_{k=w+1}^{\infty} k^{-\alpha}\theta^k}, \qquad x = w+1, w+2, \dots,$$

$$\blacktriangleright (\alpha, \theta) \in ((-\infty, \infty) \times (0, 1)) \cup ((1, \infty) \times \{1\})$$

Looks like a discrete version of Gamma, but not quite

- A disjoint union of Zipf $(\theta = 1)$ and polylog $(\theta \in (0, 1))$ distributions
- Accommodating curved data when $\theta \in (0,1)$

ZP inadequate for tails

- Going from $\theta = 1$ to $\theta \in (0, 1]$ is still insufficient for the right tail
- Consider the maximum domain of attraction (DoA) of ZP distribution

Domain of attraction

A distribution F is in the DoA of an extreme value distribution H if there exists a_n > 0, b_n ∈ R such that

$$\lim_{n\to\infty}|F^n(a_nx+b_n)-H(x)|=0,$$

where H must be a negative Weibull, Gumbel, or Fréchet distribution.

- Applies to continuous & discrete distributions
- Poisson and geometric distributions do not belong to a DoA according to the definition

Recovery to DoA for discrete distributions

- Shimura (2012, Extremes)
- If discrete F is the discretisation of continuous F_0 , and F_0 is in a DoA, then F is **recoverable** to the same DoA
- Geometric and Poisson are recoverable to the Gumbel DoA

Key results for recovery (Shimura, 2012)

$$\Omega(F,x) := \left(\log rac{ar{F}(x+1)}{ar{F}(x+2)}
ight)^{-1} - \left(\log rac{ar{F}(x)}{ar{F}(x+1)}
ight)^{-1},$$

- ► If $\lim_{x \to \infty} \Omega(F, x) = 0$, then *F* is recoverable to the Gumbel DoA
- If $\lim_{x\to\infty} \Omega(F,x) = \xi > 0$, then F is in the Fréchet DoA with tail index ξ

DoA of geometric(θ) distribution

▶ $heta \in (0,1)$

$$\bar{F}(x) = \theta^{x}$$
$$\frac{\bar{F}(x+1)}{\bar{F}(x+2)} = \frac{\bar{F}(x)}{\bar{F}(x+1)} = \frac{1}{\theta}$$
$$\lim_{x \to \infty} \Omega(F, x) = \lim_{x \to \infty} \left[\left(\log \frac{1}{\theta} \right)^{-1} - \left(\log \frac{1}{\theta} \right)^{-1} \right] = 0$$

Recoverable to the Gumbel DoA

DoA of $ZP(\alpha, \theta)$ distribution

• When $\theta \in (0,1)$ i.e. the polylog distribution

 $\lim_{x\to\infty}\Omega(F,x)=0$

- Same limit i.e. also recoverable to the Gumbel DoA
- Proof similar to geometric case

DoA of $ZP(\alpha, \theta)$ distribution

• When $\theta = 1$ i.e. the Zipf distribution

$$\lim_{x\to\infty}\Omega(F,x)=1/(\alpha-1)$$

- ▶ In Fréchet DoA with tail index $1/(\alpha 1)$
- Proof in the appendices of the paper

Some remarks

- Voitalov et al. (2019, Physical Review Research) gave the result for the continuous version i.e. the Pareto distribution
- Regular variation arguments rather than GP distribution used
- ▶ Can't use result for our proof as Zipf \neq discretisation of Pareto

Practically

 Approximate right tail of ZP(α, θ) by (discrete version of) GP distribution with shape parameter ξ

$$\xi = \mathbb{I}_{\{\theta=1\}}/(\alpha-1)$$

- Can't quite capture heavy tails of a different heaviness other than $1/(\alpha 1)$ c.f.
 - For bivariate Gaussian(ρ),

$$\chi := \mathsf{Pr}(X > u | Y > u) = \mathbb{I}_{\{|
ho|=1\}}$$

Can't quite capture the spectrum of asymptotic independence

Discrete version of GP distribution

- Integer generalised Pareto (IGP) distribution
- Prieto et al. (2014, Accident Analysis and Prevention)
- Rohrbeck et al. (2018, Annals of Applied Statistics)

Mixture model

General framework

$$f(z) = \pi_1 f_1(z) + \pi_2 f_2(z) + \cdots + \pi_m f_m(z)$$

• Subject to
$$\sum_{i=1}^{m} \pi_i = 1$$
, and $0 < \pi_i < 1$

Usually same support for all components

In extremes

$$f(z) = \left\{egin{array}{ll} (1-\phi_u) imesrac{h(z)}{H(u)}, & z\leq u, \ \phi_u imes g_u(z), & z>u, \end{array}
ight.$$

- Disjoint support for the components
- Comprehensive review by Scarrott and MacDonald (2012, REVSTAT)
- R package evmix by Hu and Scarrot (2018, JSS)

From continuous ...

$$f(z) = \left\{egin{array}{ll} (1-\phi_u) imesrac{h(z)}{H(u)}, & z\leq u, \ \phi_u imes g_u(z), & z>u, \end{array}
ight.$$

- h(z): bulk / body distribution
- ▶ $g_u(z)$: GP density
- $\blacktriangleright \phi_u$: exceedances rate

... to discrete

$$p(x) = \begin{cases} (1 - \phi_u) \times p_{\mathsf{TZP}}(x; \alpha_{\mathsf{mix}}, \theta_{\mathsf{mix}}, u, w), & x = w + 1, w + 2, \dots, u, \\ \phi_u \times [G_u(x; \sigma, \xi) - G_u(x - 1; \sigma, \xi)], & x = u + 1, u + 2, \dots \end{cases}$$

- $p_{\text{TZP}}(x)$: density of **truncated** ZP distribution
- $G_u(x)$: CDF of GP distribution
- ▶ *u*: a parameter, allowing threshold uncertainty
- ▶ w: fixed, as low as possible

Schematic

Inference & selection between power law or not

Bayesian inference

- ► To accommodate the threshold uncertainty
- Markov chain Monte Carlo (MCMC)
- ► Samples of α_{mix} , θ_{mix} , u, σ and ξ

▶ Interest in if
$$\theta_{\mathsf{mix}} = 1$$
 or $\theta_{\mathsf{mix}} \in (0,1)$

- ▶ θ_{mix} is continuous, never exactly 1 in the samples
- At the boundary makes it even more tricky
- ▶ Can't look at the proportion of $\theta_{mix} = 1$ in the samples
- Proximity is insufficient as different tail behaviours implied

Bayesian model selection

- 1. Define M which equals 0 if $\theta_{\mathsf{mix}} \in (0,1)$, and 1 if $\theta_{\mathsf{mix}} = 1$
- 2. Assign Pr(M = 0) and Pr(M = 1)
- 3. Select between M = 0 and M = 1 in the MCMC
 - Gibbs variable selection (Carlin and Chib, 1995, JRSSB) or
 - Reversible jump MCMC (Green, 1995, Biometrika)
- 4. Calculate $\hat{\Pr}(M = 0 | \text{data})$ and $\hat{\Pr}(M = 1 | \text{data})$ from MCMC samples
- 5. Calculate the Bayes factor

Bayes factor

$$B_{10} = rac{\hat{\mathsf{Pr}}(M=1|\mathsf{data})}{\hat{\mathsf{Pr}}(M=0|\mathsf{data})} \left/ rac{\mathsf{Pr}(M=1)}{\mathsf{Pr}(M=0)}
ight.$$

▶ $B_{10} > 1$: evidence of "the **body** of the data follows the power law"

 \triangleright $B_{10} < 1$: evidence of "the **body** of the data does not follow the power law"

For $ZP(\alpha, \theta)$ distribution as well

- \blacktriangleright Can apply model selection to determine $\theta=1$ or not
- Not ZP vs mixture though can determine visually
- ▶ $B_{10} > 1$: evidence of "the **whole** of the data follows the power law"
- ▶ $B_{10} < 1$: evidence of "the **whole** of the data does not follow the power law"

Applications

Moby Dick (poweRlaw::moby)

- *u*: Moderate uncertainty but identified
- Not power law for body (left tail)

Flickr users (Voitalov et al., 2019)

- 3-component mixture required
- Partial power law otherwise overlooked by ZP fit

Facebook network at UCSC (Valero et al., 2022)

Mixture (IGP) better than ZP in the right tail

Could be power law or not for body

Facebook network at Harvard (Valero et al., 2022)

Similar adequacy but strong evidence for partial power law

▶ $\alpha_{mix} < 1$, would not be possible for Zipf fit over the whole of data

- ▶ For ZP, $\theta \in (0,1)$ (polylog) almost always preferred to $\theta = 1$ (Zipf)
- "Concavity" due to lighter right tail than implied had the power law in the body been extended
- Mixture resolves by replacing ZP by IGP for the tail

Summary

- ZP distribution useful starting point for data that seems to follow the power law
- Generalises Zipf distribution, but inadequate for right tail
- Mixture model uses integer GP distribution instead
- Bayesian model selection decides if body follows the power law or not
- Applications show good fit and varying degrees of threshold uncertainty

Next steps

- More formal model comparison (ZP, 2-component mixture, 3-component mixture) via e.g. marginal likelihood
- Modified preferential attachment model that leads to such degree distributions

Thank you for listening!