

From epidemic models to the R number

Clement Lee

2021-05-24 (Mon)

Outline

- Exponential growth
- A simple epidemic model
- The R number (that everybody has been talking about)
- Connect to real-life work

You might have seen this

Source: Government's slides to accompany coronavirus press conference

Exponential growth ...

... on a straight line

10-fold every 5 days

An epidemic model

- Realistically, the number of cases/deaths can't go to infinity
- Susceptible-Infectious (SI) model
 - S: Number of people who have not been infected (susceptible)
 - I: Number of people who are infected and infectious
 - N: Total population, constant over time

$$S + I = N$$

Dynamics of the SI model

- Susceptible or infectious at any time, but not both
- Transition from S to I
 - No contact, no infection
 - Contact with an infectious person might or might not become infectious
- How do we describe the dynamics? Differential equations!

$$\frac{dS}{dt} = -\beta \frac{S \times I}{N}$$

$$\frac{dI}{dt} = \beta \frac{S \times I}{N}$$

Understanding the equations

- $\beta > 0$ is an unknown **parameter**
- Also, remember S + I = N, so

$$\frac{dI}{dt} = \beta \frac{S \times I}{N}$$
$$= \beta \frac{(N - I) \times I}{N}$$

Mock question!

A-Level MATHEMATICS Paper 1

Question 1

- a. Decompose the function $\frac{N}{(N-I)\times I}$ into partial fractions. [2 marks]
- b. Given that l = 1 at t = 0, solve the following differential equation. [5 marks]

$$\frac{dI}{dt} = \beta \frac{(N - I) \times I}{N}$$

Question 1a

Let

$$\frac{N}{(N-I)\times I} = \frac{A}{N-I} + \frac{B}{I}$$

Rearranging terms, we have

$$\frac{N}{(N-I)\times I} = \frac{(A-B)\times I + BN}{(N-I)\times I}$$

Equating the coefficients, we have A - B = 0 and B = 1, which means A = 1.

$$\therefore \frac{N}{(N-I)\times I} = \frac{1}{N-I} + \frac{1}{I}$$

Question 1b

As this is a "variables separable" question, we have

$$\frac{N}{(N-I)\times I}\frac{dI}{dt}=\beta$$

Integrating both sides with respect to t

$$\int \frac{N}{(N-I)\times I} dI = \int \beta dt$$

Using result in Question 1a,

$$\int \left(\frac{1}{N-I} + \frac{1}{I}\right) dI = \beta t + c,$$

where c is a constant.

Question 1b (cont'd)

$$-\log_e(N-I) + \log_e I = \beta t + c$$

As
$$\log_e \frac{A}{B} = \log_e A - \log_e B = -\log_e B + \log_e A$$
,

$$\log_e \frac{I}{N-I} = \beta t + c$$

Substitute the initial condition I = 1 when t = 0,

$$\log_e \frac{1}{N-1} = c$$

Question 1b (cont'd)

$$\log_e \frac{I}{N-I} = \beta t + \log_e \frac{1}{N-1}$$

Exponentiating and reciprocating both sides,

$$\frac{N-I}{I} = (N-1)e^{-\beta t}$$

Adding one to both sides and rearranging,

$$I = \frac{N}{1 + (N-1)e^{-\beta t}}$$

Intepretation

$$I = \frac{N}{1 + (N-1)e^{-\beta t}}$$

As t becomes larger:

- $e^{-\beta t}$ becomes smaller
- The denominator becomes smaller
- I becomes larger

An example

$$N = 68.2 \text{ million}, \beta = 0.114$$

Susceptible — Infectious

A better model

SIR model

- R: People who are **removed** (recovered / death / vaccinated)
 - Different to the **R number** the government has been talking about
 - We will come to this R number later
- S, I, N: as before

$$S + I + R = N$$

Differential equations again

$$\frac{dS}{dt} = -\beta \frac{S \times I}{N}$$

$$\frac{dI}{dt} = \beta \frac{S \times I}{N} - \gamma I$$

$$\frac{dR}{dt} = \gamma I$$

Observe that

$$\frac{dS}{dt} + \frac{dI}{dt} + \frac{dR}{dt} = \frac{dN}{dt} = 0$$

Another mock question?

- Too difficult to solve it in 5 minutes
 - You'll learn how to solve these equations
- In some more sophisticated models
 - Impossible to solve the equations using pen and paper
 - You'll learn numerical methods if a "nice" solution is not available
- Want to know more? See the SI, SIR & other models on Wikipedia

The R₀ number

- Two parameters, β and γ in the SIR model
 - β : The rate of infection
 - γ : The rate of removal (recovery or death)
- The R₀ number is equal to β/γ
- If $\beta < \gamma$, $R_0 < 1$
 - Removals faster than new infections
 - Epidemic under control
- If $\beta > \gamma$, $R_0 > 1$
 - New infections faster than removals
 - Epidemic bound to happen

Another way of looking at R₀

$$\frac{dI}{dt} = \beta \frac{S \times I}{N} - \gamma I$$

$$= \frac{\beta}{\gamma} \times \frac{S \times \gamma I}{N} - \gamma I$$

$$= \left(R_0 \frac{S}{N} - 1 \right) \times \gamma I$$

At t = 0, S is close to N, so

$$\frac{dI}{dt} \approx (R_0 - 1) \times \gamma I$$

If $R_0 > 1$, $\frac{dl}{dt} > 0 \implies$ increasing number of infectious

R₀ changes over time and space

- It seems like the R₀ number is constant
- But β (infection rate) and R₀ depend on some factors:
 - The biological nature of the virus
 - How many contacts do we make
- Social distancing and other measures:
 - lower the 2nd factor
 - push β & R_0 down

More deadly = bigger pandemic?

- Ebola has a higher death rate
 - γ is higher
- $R_0 = \beta/\gamma$
 - If β stays the same
 - A higher γ pushes R_0 down
- Deadlier diseases/viruses not necessarily more widespread
- One single number doesn't tell the whole story
- Source: R₀ number on Wikipedia

Disease	Transmission	R_0
Measles	Aerosol	12-18[1]
Chickenpox (varicella)	Aerosol	10-12[2]
Mumps	Respiratory droplets	10-12[3]
Rubella	Respiratory droplets	6-7 ^[4]
Polio	Fecal-oral route	5-7[5]
Pertussis	Respiratory droplets	5.5 ^[6]
Smallpox	Respiratory droplets	3.5-6.0[7]
COVID-19 (wild type)	Respiratory droplets and aerosol ^[8]	2.9 (2.43.4)[9]
HIV/AIDS	Body fluids	2-5[10]
SARS	Respiratory droplets	2-4[11]
Common cold	Respiratory droplets	2-3[12]
Diphtheria	Saliva	2.6 (1.74.3)[13]
Ebola (2014 Ebola outbreak)	Body fluids	1.78 ^[14]
Influenza (2009 pandemic strain)	Respiratory droplets	1.6 (1.3-2.0)[15]
Influenza (seasonal strains)	Respiratory droplets	1.3 (1.2-1.4)[16]
Nipah virus	Body fluids	0.48 ^[17]
MERS	Respiratory droplets	0.47 (0.290.80)[18

What are the scientists doing?

- Those performing clinical trials and developing vaccines
- One is no longer susceptible (S) or infected (I) once vaccinated
- Growth of I greatly reduced

$$\frac{dI}{dt} = \beta \frac{S \times I}{N} - \gamma I$$

What are other scientists (= we) doing?

- Calculate the parameters and R₀ number
- Collect the data of the numbers of infectious, deaths and recovery
- Apply more realistic models
 - The SI and SIR models are too simplistic
 - If the model is no good, the results are no good

If we know the numbers

- N = 68.2 million
- $\beta = 0.114$, $\gamma = 0.02 \Rightarrow R_0 = 5.7$

- Susceptible - Infectious - Removed

Reality

- Population varying & divided into regions
- $\beta =$ _____, $\gamma =$ ____ $\Rightarrow R_0 =$ ____

- Susceptible - Infectious - Removed

Uncertainty

R number estimates in the nations & regions

Range of Covid-19 reproduction numbers

Figures for England and Wales published on 14 May, Northern Ireland on 11 May, and Scotland on 7 May

Source: DHSC, Scottish Government, NI Dept. of Health, Wales TAC

Source: BBC's coronavirus UK map

Thanks for listening!

Useful resources:

- Government's press conference slides
- Government's coronavirus dashboard