Clement Lee
2019-06-13 (Thu)
| Bernoulli | Mixed membership | Poisson | |
|---|---|---|---|
| Clustering | Hard | Soft | Hard |
| Quantity of interest | \(\boldsymbol{Z}\) | \(\boldsymbol{\Theta}\) | \(\boldsymbol{Z}\) |
| Marginalisation? | \(\boldsymbol{C}\) | \(\boldsymbol{C}\) & \(\boldsymbol{D}\), or \(\boldsymbol{Z}\) | \(\boldsymbol{C}\) & \(\mu\) |
| Remarks | Neither marginalisation particularly useful | Exponential priors for \(\boldsymbol{C}\) with dep. on \(\boldsymbol{Z}\) | |
| Quadratic computational cost | Can extend to nested version |
\[ f(\boldsymbol{Y})=\frac{f(\boldsymbol{Y}|\boldsymbol{Z})\pi(\boldsymbol{Z})}{\pi(\boldsymbol{Z}|\boldsymbol{Y})}\] \[ \log{}f(\boldsymbol{Y})=\underbrace{\log\left[f(\boldsymbol{Y}|\boldsymbol{Z})\pi(\boldsymbol{Z})\right]}_{\text{log-ICL}} - \log\pi(\boldsymbol{Z}|\boldsymbol{Y}) \]